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Modeling & Optimization for Streaming
Listening Demand

Kobi Abayomi

Abstract. Digital delivery of songs has radically changed the way people can enjoy music, the
sort of music available for listening, and the manner by which rights holders are compensated
for their contributions to songs. Subscribers can enjoy an unlimited potpourri of songs and
sounds, uniquely free of incremental acquisition or switching costs. This shift reveals listen-
ing patterns governed by affinity, boredom, attention budgets, etc. Listening patterns can be
driven instantaneously, dynamically, organically or programmatically (playlists, for example).
Listening demand is in a new paradigm, with a commensurate change in revenue implications.
These new listening phenomena deprecate past orthodoxy around content curation in which
a listener made a single purchase of a song. This point-of-sale model is now insufficient: de-
mand revenue is proportional to song affinity—e.g., by how often a song is listened to within a
time interval—and can be modeled as a time dependent process. We explore modeling digital
on-demand demand and employ a fully Bayesian probabilistic model that: (1) yields estima-
tors for multi-level effects on song demand and (2) naturally joins with multi-stage Linear
Optimization scheme to optimize the same.

In loving memory of M. Atiim Abayomi

1. “NILE, MAKE ME A HIT LIKE BOWIE’S”: A SIMPLE DYNAMIC
MODEL FOR STREAMING SONG LISTENING. This paper focuses on mod-
eling demand for a “song”—generally a two to five minute musical composition—
consumable via some digital delivery service or Digital Streaming Provider (DSP)
and the strategic, macroscopic, business-useful inferences that could then be deduced
from elucidation of some assumptions around the demand for those songs. We place
song-level listening demand in a modeling framework—i.e., with estimable effects—
that can then be managed in an optimization or demand maximization scheme.

Nile Rodgers, in an interview about his influence on popular music of the 1970s
and 1980s recalled this exchange with Miles Davis:

Miles would always ask me to make him a hit like how I did for [David] Bowie. I never took
him seriously until he covered [Cyndi Lauper’s] ‘Time after Time.’ I listened to that track
and realized he was serious, and like most artists, wanted as many people to hear him as
possible. [1]

Q1

In this paper we address the macroscopic dynamics of song listening via a proba-
bilistic model. We focus on the aggregate demand dynamics of a population, or sub-
population, enjoying a song as a function of time, aggregating (if not fully eliding) any
individual or group-wise utility—here the probability of listening—into larger group-
wise aggregate demand.

It is natural to use these sub-populations—or audience segments—as the device
to collect the effects on listening as effects on demand. Music industry profession-

doi.org/10.1080/00029890.2024.2410142
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als, A&R1 executives, say, may think of an audience segment as a micro-genre. This
stratification is familiar in the advertising technology literature [2].

Streaming demand as a counting process. To begin, but without loss of generality,
we consider a “song” a de novo offering: a new, or new version of a composition
yielding a demand curve with a fixed point at (0,0). Time zero is just as a song is
released—or, in the parlance, dropped. Zero observable demand at the release date.2

In similarity with [3], the model for volume of listening, or listener response to a
listening “opportunity,” is a counting process where any individual listener, i, enjoys a
song with a (not-necessarily) time variant probability Pt,i . In this paper capital letters
represent random processes, lower case letters refer to observed or observable val-
ues. We rely on the random processes as U-statistics [4] for measurability, and other,
assumptions.

Ut,i =
{

0 with probability Pt,i

1 with probability 1 − Pt,i .
(1)

We can think of the time dependent dis-aggregated {Pt,i}t=1,...T ’s as an affinity curve,
say, for an individual listener i. An aggregation of these as realized utilities is given by

Y
j
t =

N
j
t∑

i=1

Ut,i, (2)

which are the cumulative realized individual listening affinities within each listening
strata, N

j
t , with i ≤ j ≤ J , yielding a song-level demand curve

Yt =
J∑

j=1

Y
j
t . (3)

Let i be an individual listener and let the listeners be divided into J (not necessarily
disjoint) time-varying listening strata, {N1

t , . . . , N
j
t , . . . , NJ

t }, for time 1 ≤ t ≤ T .
Then we let n

j
t denote the size of the jth stratum at time t , that is, |Nj

t | = nt
j . Another

way to state this is that the comprehension of listening stratification—as a function for
measurement of the listening population—exploits subadditivity, e.g.,

∣∣∣∣∣∣

⋃

j

N
j
t

∣∣∣∣∣∣
≤

∑

j

n
j
t . (4)

Thus equation (4) conveys the non-disjointedness of “listening mode”: strata may over-
lap, listeners may be compelled by (or marketed to via) multiple affinities. Segregation

1The A&R, Artist & Repertoire, department at a music label is typically tasked with discovering and curat-
ing music talent.

2On without loss of generality: in practice a song may be “pre-released”—not available for listening but in a
potential listeners queue—or an available song that is in a demand trough. This need not affect the model spec-
ification here, but the audience stratification and effects within each strata might be different. The marketing
strategies and listener demand response for a song that is seasonally popular, say, may as well be unique.
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of listener affinity can be as idiosyncratic as the set of rules (or some of the set of rules)
which increment a song as a fully “listened to” stream on a particular DSP (30 sec-
onds of listening, say, on a particular provider), or as intuitive as merely on which
DSP a song is enjoyed. These curves are models for listener preference, over time, for
coherent—but not necessarily identical—patterns of listening demand or consumption
unique to the “listening mode.”

Typically these curves are not disaggregated by practitioners. Top line demand
(number of streams, cumulative number of streams) is often illustrated; investigation
of other stratifications for disjoint or overlapping segments—demographic, listening
mode (playlist, first-time, library, etc.)—is uncommon. Inability to identify unique
listeners can frustrate segment identification and assignment: this is one reason why
segment-wise inspection is less common. Within definite intervals and for listeners
who are identifiable (pre-saves, for example) non-disjoint segmentations are not diffi-
cult to create.

The simplest possible non-disjoint segmentation is to merely separate cumulative
streaming listening curves by DSP. “DSP-wise” differences in listening affinity are
well known and frequently observed. This is a first step to more particular segmen-
tation of listening affinities: the benefit of being able to segment demand cannot be
understated. Coherent audience segmentation maps the effect of either ambient or lo-
cal conditions which induce a listener to listen. One way to convey this is to say that
any listener, at any time, may be exposed to (and listen to) any song for any reason—
in fact, multiple reasons. These can be expected to be dynamic; only a certain sort of
person listens to Christmas music in July, for example.

Figure 1 shows a cartoon graphic of listening demand for a song over a 40 week
interval. Curve height is the number of listeners weekly listeners on each DSP, say;
the colored curve aggregates listeners within unique subscription services. The black
curve is the total and the overall demand curve. This illustration would be familiar
to music industry executives and/or artists: an important heuristic for modeling song
performance is that it should be clear that a song performs differentially (over time)
on different platforms. DSPs can appeal to different audiences, with possibly different
listening preferences; each DSP may offer variegated subscription plans, which may
appeal to listening preferences heterogenously.

The aggregate curve in Figure 1—in black at the top—conveys a slow steady growth
in listening demand. The other curves, on audience (sub) segments illustrate the dif-
ferential listener affinities (at least, on different DSPs). This sort of rich, differential,
picture of demand is invaluable to modern content rights management.

Other counting process for streaming demand. Content rights holders typically re-
ceive intermediated information on listener demand, via the DSPs, in a way that is sim-
ilar to data scientists in advertising technology. To account for this “schmutzdecke,”3

and in place of a completely naive observed data model, modeling the extremal pro-
cesses can yield inference. Let

Y +
t =

∧

N1
t ,...,NJ

t

n
j
t∑

i=1

Ut,i (5)

a boundary process, on the best possible audience strata—i.e., with maximum lis-
tening affinity. And let

3From a past as an environmental statistician, an intermediate filtering layer.
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Figure 1. Illustration of song demand over time. Each curve, Y
j
t , is a illustration of demand for a particular

stratum. Here the audience strata are just each DSP: the number of people listening to the song on a DSP
at a coincident time within an agreed upon time. In this cartoon J = (Spotiful, EarSnake, NileRover) (three
made-up DSPs). Each convey different demand patterns. One can imagine an example narrative: the demand
dropped precipitously on NileRover, built slowly on Spotiful and was steady on EarSnake. These explanations
are lost if only the black—total curve—is inspected. Behind each unique demand curve there is differential
performance of the song over time, thus differential listening affinity, thus differential response to the song
itself and marketing for the song. These strata could be playlisting behavior, or overlapping demographics—
each are important to song marketing. Any listener can be in multiple strata.

Y −
t =

∨

N1
t ,...,NJ

t

n
j
t∑

i=1

Ut,i (6)

be the lower boundary.
Content rights holders are concerned with song performance—and the ability to

characterize a song’s performance—in the presence of confounding factors: temporal-
ity, ambient head or tailwinds, DSP idiosyncrasy, bad luck, etc. There are many hard
to quantify explanations for song performance. Fixing Y + and Y − as the extremal de-
mand processes, with respect to the process model, can yields stable comparative mod-
els for performance characteristics. The extremal processes can offer insight in cases
where data (or metadata) to meaningfully stratify cumulative demand are unavailable.
In Section 3 of this paper we illustrate a model (the envelope model) amenable to
minimal or maximal listening strata (Figure 2).

Q2
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Figure 2. Illustration of processes for song demand over time. The curves—the max value process, the ob-
served demand curve and the minimum value process—are envelopes for the expected demand over time.
Here, the graph is shaded by the “temperature” of the underlying aggregate affinity process Pt,i . Affinity for
the song begins to “cool” in week 8.

Model for listener affinity. To move from a counting process to a probability model
for listener affinity we impose a minimal probabilistic assumption (later, this is a
constraint in the optimization scheme) on the affinities, Pt,i , which naturally yields
a Bernoulli distribution for the utilities, Ut,i , as:

Pt,i∈j = θ j xt + γ j zt (7)

Ut,i∈j ∼ Ber(θ j xt + γ j zt ). (8)

Covariates for exogenous or ambient effects on demand are collected in zt,j ; those
for endogenous effects (marketing, complementary media, social media, etc.) are
collected in xt,j . Another modeling trick is to assume (and constrain in the opti-
mization scheme) the C and D dimensional covariates are nonnegative such that:
x ∈ [0, 1]C, z ∈ [0, 1]D. This is just to elide effects that depress song listening, i.e.,
we are not accounting for dislike of a song or sound.

Song demand via listening mode. Figure 3 is a plot and characterization of observed
demand curves for 1,000 de novo songs, with demand curves observed in calendar year
2021, on a popular streaming service. The demand curves were classified by k = 6
mean centroid classification via the Python tslearn toolkit to illustrate similarities in
types of song demand curves.

Figure 3 points to varied modes for listening and song demand: song demand peaks
and decays with regular, differentiable characters. Modeling the incidental processes

MODELING & OPTIMIZATION FOR STREAMING LISTENING DEMAND 5
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Figure 3. Illustration of modes of song demand, from observed song demand on a popular streaming service
in calendar year 2021, via time-series clustering. Each de novo demand curve was translated to (0, 0), i.e.,
release date vs. zero number of listeners to start. Time is incremented in weeks. As processes, each curve
(type) traces the number of listeners in each week. The top row are samples of songs within each (column)
time-series cluster. The middle and bottom rows are lower and upper boundaries within each cluster. Captions
at the bottom of each column convey an interpretation of the demand pattern for each cluster. Successful
partitioning of listener types can yield empirically disjoint or differentiable curve types [20]. Each column are
centroids of time series curves that we interpret as categories of types of listening demand curves. The pattern
of young people listening to a song may follow an “early peak with slow decline,” for example, while an older
demographic may follow a “later peak with slow decline.”

Ut through to the extremal process curves, Y +
t , Y −

t lets the model be flexible for the
available data granularity.

The importance of audience segmentation. One can think of an audience segment
as a listening group which responds similarly to listening stimuli (at a particular
time); within each segment we model the utilities as i.i.d.—random but identically
distributed. The {Nj

t }j=1,...,J are non-disjoint because individual listeners may occupy
more than one utility for listening (at a particular time) a particular song.4 The ability
to segregate demand as unique audience segments and model differences in effects is
important.

Contemporary work on streaming demand [3, 5] elides listener level utility with
aggregation, perhaps as user level data are hard to come by. The audience segmen-
tation device in this paper joins varied hierarchical level listening demand data with
listener level utility models [6,7]. This resonates with the both the spirit of [8] and the
similarities in theoretical process models they derive and both they and we observe in
data.

With a natural probability model in hand for listening demand curves we can now
address the estimation problem directly. A music marketer should be, mainly, inter-
ested in the estimation of θ j , that is, the effect of marketing on music demand. Includ-
ing data which allows the γ j to be estimated allows a marketer to control for ambient
effects, competitive releases, etc.

2. “JUST BECAUSE A RECORD HAS A GROOVE, DON’T MAKE IT IN THE
GROOVE”: COVARIATE MODELS FOR PROCESSES & FORECASTING.5

Within any coherent audience segment N
j
t , the estimator for segment-wise affinity

can be accessed via a logistic model,
4N.B. that the time index for streaming demand modeling can be coarse, where each increment is one week.
5From the lyrics to “Sir Duke” [9].
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P̂(Ui,t = 1) = logit−1{θ j xt,i + γ j zt,i} = P̂t,i . (9)

As usual this is a well known model for a binary process: here where a song listen
is realized. Straightaway the estimators for effects of business levers (θ ) via observed
data covariates (x) or ambient effects (γ ) via (z) can be modeled using individual,
user level data where available. Where these data aren’t available—for example Apple
Music’s API does not offer granular, user level data—one can use segment-wise counts
and covariates and then can appeal to the extremal counting process models.6 For
example, for observed data demand curve yt , for audience segment j , the distribution
of the size of the audience strata is

P(N
j
t = nt) =

(
nt − 1
yt − 1

)
P

yt
t,i (1 − Pt,i)

nt−yt . (10)

The Negative Binomial distribution relates the demand curves’ observed value, yt

to the size of the listening strata Nt in terms of the covariates as Pt is covariate depen-
dent. More straightforwardly, Poisson or Negative Binomial regression can specify the
effects of the covariates on the demand curves.

Fully Bayesian workflow for streaming demand. Here it is important to invoke
a modeling perquisite: translating the songs to a time-demand interval beginning at
(0, 0). This condition is met if data for release dates and listening demand beginning
from release are available. This condition is not always necessary, nor it is necessarily
sufficient. Consider a model forecasting demand behavior for a song in deep catalog:
a song that was released many years ago. We illustrated in Figures 1–3 the growth-
decay character of listening demand for de novo songs; these demand patterns may
exist within several alternate or similar periodic behaviors.

For example, when an audience segment of young listeners discover Stevie Won-
der: the mode of growth and decay of listening can be similar, for this strata, to
a new release. A forecaster who wants to consider aggregate future demand for a
re-release of Stevie’s Jesus Children of America, say, can’t rely fully on only the
dynamics of de novo songs by comparable artists or even Stevie Wonder himself
but within strata the assumption is tenable and across stratum models are fit on the
convolution.

This is a fully Bayesian setup for collecting, training, estimating, and updating the
model(s) for streaming demand (see [10]). This setup co-ordinates demand response,
covariate information, and metadata in a framework that is useful for monitoring and
gauging song performance in-the-moment and yields a full-distributional tableau for a
subsequent optimization scheme as well.

In what follows, we elucidate two versions of Bayesian models which capture lis-
tener stratum and artist level effects—accounting for differences in utility, say, among
the effects on listeners who enjoy only the unique rhythm guitar, organ and synthesizer
on the Ohio Players’ single Ecstasy and those who have an ear for it in the rest of the
album.

We can think of both models as “forcing” models: the first—the ‘Null Model’—in
the sense that the effects of covariates on listening affinity “force” audience segment-
wise demand. The second—the “Envelope Model”—conveys these same effects, via

6For example, a straightforward extremal segment is first time listener.
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the probability model, but mediated by structural equations for the growth and decay
of listening demand for any song.

Null model These effects in this model are time-invariant and the model itself only
accounts for time dependent effects via the value of the predictor processes. This
model does not intermediate the covariate effects on listener affinity within audience
segments. One can imagine an affinity process where covariate effects “row” and/or
“decay” differentially across non-disjoint strata, yielding overall growth/decay curve
modes similar to those in Figure 3. But there is only one Bob Marley.7 In practice,
where an audience segment is identifiable—say via high resolution user information,
or for songs & artists where listening affinities persist—we recommend using the Null
model for effect estimation and optimization.

Null Model

y
j [a]
t ∼ NegBin(eθj [a]xt,i+γ j [a]zt,i , ωj [a])

θ ∼ Normal(µx
a, #

x
a)

γ ∼ T runcNormal(µz
a, #

z
a)

#x
a ∼ LkjCorr(ηx

a)

#y
a ∼ LkjCorr(ηz

a)

ηx
a ∼ χ2(τ x)

ηy
a ∼ χ2(τ z)

ωj ∼ '(αa, βa); {αa, βa}a∈A constants.

(11)

ADSR/forced model The illustrations in Figure 4a and 4b picture a forcing, or phase
shift model, that we find useful to convey covariate effects through while simultane-
ously capturing common growth-decay song demand phenomena.
Forced (envelope) Model

y
j [a]
t ∼ NegBin(E(Yt ), ω

j [a])

E(Yt ) = αj [a]
r + βj [a]

r · t

θa ∼ Normal(µx
a, #

x
a)

γ a ∼ T runcNormal(µz
a, #

z
a)

#x
a ∼ LkjCorr(ηx

a)

#z
a ∼ LkjCorr(ηz

a)

ηx
a ∼ χ2(ux)

ηy
a ∼ χ2(uz)

ωj ∼ '(αa, βa);
{αa, βa}a∈A constant

αj [a]
r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|α| ≥ 0 , r ≤ τA

|α| ≈ 0 , τA ≤ r ≤ τS

|α| ≤ 0 , τS ≤ r ≤ τD

|α| ≈ 0 , τD ≤ r ≤ τR

βj [a]
r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|β| ≥ 0 , r ≤ τA

|β| ≈ 0 , τA ≤ r ≤ τS

|β| ≤ 0 , τS ≤ r ≤ τD

|β| ≈ 0 , τD ≤ r ≤ τR

τA ∼ 1
T − 2

τD,S,R ∼ 1
T − 2

T∑

t=2

1
T − t

.

(12)

7Or Michael Jackson, or Jan Hammer, or KraftWerk.
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The ADSR model is a Bayesian Hierarchical Model for “always on” prediction
of streaming demand with change points and phase shift forcing. Listener strata are
indexed {1, . . . , J } as before. Vector valued estimators for endogenous and exogenous
predictors enter the first level of the hierarchy via the linear equations in equation
(12). These are now the main effects per each subspace of this model. Contrast the null
model: the main effects are simply the covariate coefficients.

This phase shift model has four phases: A attack or growth; D decay; S sustain; R
release. The change points for each phase can be estimated simultaneously or before
the remainder of the posterior for yt (here the prior is Restricted Uniform—see [11]).
Figure 4 is an illustration of the ADSR model.

This model fixes growth-decay conditions on segment-wise counting processes. In
this version of the model the main effects estimators, for the utility forcings, are esti-
mated as projection on subspaces of a phase transition model and in this way mediated
or attenuated depending upon the phase of the process. One reason for not treating this
as a fully Gaussian Process with a Latent Variable [12] is that the generating processes
here are only Gaussian in a large numbers regime. Starting from first principles here
yields distributional inference even for less popular songs and artists, i.e., that stretch
the Gaussian assumption on the feature space [13,14]. In practice we found this model
to be useful for prediction of segments that we could not discriminate across with
metadata: in particular the extremal demand processes.

3. “WHIP IT”: FULLY OPTIMIZING LISTENING DEMAND. “Whip It,” a sin-
gle by the new wave group DEVO on their 1980 album Freedom of Choice is memo-
rable for its synthetic C-G-D chord chorus punctuated by a 5-4 synthesizer suffix that
is immediately and famously recognizable [15]. When James Ambrose Johnson, Jr.—
the legendary Rick James—was working at the end of 1980 on “Super Freak” with
Alonzo Miller he was aware of and a fan of DEVO’s single. In Bitchin’: The Sound &
Fury of Rick James James was looking to imbue his track—already a likely hit with an
unforgettable walking blues-ish bassline and doubled piano chords throughout—with
a sound that, as he put it, would get him a new audience:

James insisted on that 5-4 DEVO sound. He wouldn’t relent. He said he knew it would get
him a new wave audience, a white audience. What the kids were listening to. He fought me
and I put it in. He was right. [16]

It is important to note that any song, while a work of art, can be regarded via its
constitution from parts, each having a possible effect on listening behavior. Producers
and dj’s are aware of these differential affinities when they mix songs live or in studio,
when they search for a hook or break that has just the right sound for the audience they
intend the song for. Inasmuch as the models written here can encode, measure, and be
optimized for marketing levers, so can sound information encoded on partitions of a
song be measured against a dictionary of segmented audience response. Optimization
for listening affinity can address the tuning of a song as well.8

Recall that |N | is the total audience available for a song; fix it constant for each
time t over the period {1, . . . , T }; T is usually quite large, each t often a week. Re-
call that the {Nj

t }0≤j≤J form a non-disjoint covering for N ; individual listeners i may
be in more than one audience segment (at a time) N

j
t . The audience segment cover-

ing permits a differential response to marketing strategies xt, say, and ambient events
zt that affect listening affinity—within each equal time interval t—via effects θ j and

8This happens often post hoc, for example when a song is sped up, slowed down, remixed or the well
known conversions to Musak.
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γ j . Conversationally, the audience segment covering {Nj
t }0≤j≤J conveys the audience

segment-wise reason at a particular time for listening: one time during exercise, an-
other time in an algorithmic playlist of new songs, another time to prepare for sleeping.

Any budget for listening—from the perspective of the listener—is a function of the
utility curves’ {Ut,j }0≤j≤J response to marketing or ambient impulses xt , zt—i.e., the
magnitude of the coefficients φ and ψ—and models incremental listening as mem-
bership in a different audience segment (e.g., listeners’ ability to listen for a different
reason).9 The impacts of endogenous & exogenous forcings are conveyed via the indi-
vidual listening utilities, i.e., realized probabilities. The final piece to consider is what
the equations for process maximization, for either model, are.

Null model. Consider the maximization of listening under the null model, where
the sole dynamic is listener affinity. From equation (7) the user level utility curves
are a function of endogenous and exogenous dynamics via effects, respectively,
xt,j , zt,j ; θ j ; γ j —i.e., spend per marketing channel, impulse per social channel, de-
mand per marketing spend, and demand per social channel.

Let the endogenous budget B (the amount of money the rights holder has to spend
through T ) for a song be:

B =
∑

t

Bt =
∑

t

1T xt (13)

with 1 a vector of ones the same length as x. This is just to say that the rights holder
has a finite & necessarily and wholly exhaustible budget for endogenous forcing.

Maximization of Null Model.

max EUt,i∈j = max Pt,i∈j = max
xt

θ j xt + γ j zt

s.t.

θ j xt + γ j zt ≤ 1

θ j xt + γ j zt ≥ 0

1T xt ≤ Bt

1T zt ≤ S

xt ≥ 0

zt ≥ 0.

(14)

Above is the maximization scheme for the Null model. Maximization of the
expected utility for any listener, audience-segment-group-wise is equivalent to maxi-
mizing the probability of listening within a segment. The probability term must remain
a probability; the budget across channels at a time t is constrained by the total budget
available at t . Assume that marketing spend and social buzz can only increment.

A program for the maximization of expected utility for a listener within a particular
segment j at time window t is in equation (14). The maximal input for the path, as a
function of time, is derived from the Lagrangian for the optimization scheme in (14):

9This is an important distinction between the song and utility of listening to it at a particular time, for a
particular reason. From the perspective of the listener this a model for listening choices; from the perspective
of the inventory holder (song creator or curator) it is a model for song demand.
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x∗
t,i∈j =

{
Bt [θ j ]−1 where 0 < Bt ≤ (1 − γ j z)[θ j ]−1

(1 − γ j zt )[θ j ]−1 where Bt > (1 − γ j z)[θ j ]−1 (15)

where [·]−1 is a vector pseudo-inverse. This is to take the maximum of either the
scaled available budget Bt , or the scaled residue beyond the endogenous effects z; each
“scaled” by the relative effect of endogenous—or business-wise levers—on the song
utility, within each audience segment. In practice, the budget can be reallocated across
audience segments—and it should be—to follow the (estimated) effect for greatest
gain in audience magnitude.

ADSR model. Remember, the forced model imposes a pattern, or a template of, over-
arching listening affinity (or song uptake). Refer again to Figure 3. The use of the forc-
ing model is to exploit the regular patterns in aggregate song demand with a model that
reduces the inference burden while increasing the explanatory power. Here, we use the
ADSR or envelope model—common to the sound engineering literature as a model for
the intensity of a sound over time [17], and a well-known generative tool for modify-
ing a sound. Statistically this model is a special case of a phase transition model (see
[18])—characterized by discontinuities between the phases at the transitions. Refer-
ring to the elucidation in equation (12) this model is fit in two steps:

I Fit the change points. The four phases of the ADSR model yield 3 change—or
discontinuity—points. These can be fit a priori, prior to the fully Bayesian estima-
tion of the remainder of the model parameters, or either a priori or jointly via the
restricted uniform distributional specification in [19].

II Fit the partite models. Each phase of the ADSR model is essentially linear: the
parameters to be fit are the slopes and intercepts for each linear part. The effects be-
tween the endogenous and exogenous covariates, the distributional hyperparameters
for dependency between, and precision of those effects—each of those are parame-
ters to fit within each phase.

The model is designed to capture dynamics for de novo songs—songs new to an
audience of listeners,10 yet is flexible to serve for songs with varied observed release
times and listener exposure.

In the forcing model the endogenous and exogenous effects are estimated jointly
with the partite linear model parameters. This is simply to say that the model flexibly
estimates the effect on listener affinity within audience segment and subject to the
growth/decay phase of the song, given the ADSR model.

The equations in (12) now specify a Bayesian hierarchy similar to the unforced
model but with estimators for effects θ, γ that are constant within phase. This sim-
plifies the maximization scheme. For example, in phase [I ] the maximum expecta-
tion is at time tA, within this phase the estimating equations for effect are α = 0 &
β = µtA

tA
. The mean value function in this phase, µtA is defined as in the unforced

model.
10To borrow jargon from advertising technology, the in-flight period for an advertisement is the length of

time an advert is placed within media for impressions.
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Figure 4. Comparative illustrations of processes for song demand over time. In Figure (a) the model is il-
lustrated as typically used in a Digital Audio Workstations (DAW). In Figure (b) the model is applied to the
“in-flight” for a de novo song from release date. This is a special case of a phase-transition model [18]; the
discontinuities here (at the nodes with enlarged circles) are where we fit partite models for each phase.

Maximization of Forcing Model, at phase extrema.

[I ] E(Yt ) = µtA

tA
· t

[II ] E(Yt ) = µtAtS − µtS tA

tS − tA
+ µtS − µtA

tS − tA
· t

[III ] E(Yt ) = µtS tD − µtD tS

tD − tS
+ µtD − µtS

tD − tS
· t

[IV ] E(Yt ) = µtD tR

tR − tD
− µtD

tR − tD
· t

(16)

Above is the maximization scheme for the ADSR model. Maximization of the
expected utility for any listener, audience-segment-group-wise is equivalent to max-
imizing the probability of listening within a segment, which is equivalent to maximiz-
ing each of these equations at their rightmost point. As the mean value function for
each phase has a constant first derivative, the maximal path x is constant within phase.
The budget across channels at a time t is constrained by the total budget available at
t . Again we assume that marketing spend and social buzz, etc., can only increment
positively (Figure 5).
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Figure 5. Illustration of demand curves estimation for audience segmented songs. Audience segments at each
song are illustrated in colored line; shaded regions are predicted posterior intervals. Vertical dotted lines are
optimal intervention times.

4. COMMENTS AND RECOMMENDATIONS. Either of these models should
“fit” nicely within current rights holder management schemes. Either model can be
dynamically instantiated—in particular the phased/forcing model—with a simple LP.
The forcing model needs only (linear) estimators for the mean value function at the
change of phase after the change points themselves are estimated. Knowledge of these
estimators—especially for this model—make a straightforward optimal path for lis-
tening maximization.

Time scales for marketing in aural media are discrete. Typically song performance is
evaluated from week-to-week; advertising & social campaigns can be adjusted weekly.
Optimization schemes work well on a portfolio of assets. Use of either version of these
models on a suite of assets is preferable. It is conceivable that estimators for marketing
or ambient effects on listening affinity trade or switch magnitude and sign across time
periods, e.g., Halloween music, Christmas music.

An innovation shared by both the null and forcing models is to simply be willing
to segregate the sources of (listening) demand and keep track of the marketing actions
within each segment to yield usable time-aware effect estimators. Zooming out: au-
dience segmentation for listening demand is key, perhaps even more for sound media
demand than visual. The differential effects of marketing & exposure to a sound once
it is observed are not difficult to measure. This paper is an argument for the impor-
tance of— and illustrates how to model and optimize over—these song specific effects
differentially across different listener preferences (in different ways at different times,
etc.).
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