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Bayesian Multivariate Markov Processes for a
Network Flow Optimization Problem

P. Vanegas, K. Abayomi

Abstract—Vanegas [2009] considered the reallo-
cation of land areas after land development as an
Integer Programming (IP) control problem where the
objective function is the minimization of sediment
flow to riverbeds subject to physical-hydrological
constraints via a Network-Flow (NF) formulation.
The control variables in Vanegas [2009] are calcu-
lated from spatial data via raster maps via affine
(piecewise-linear) functions; the optimal locations are
discovered by Heuristic search.

This paper updates this setup with three key ad-
vances: (1) the spatial data via raster map is regarded
as probabilistic having non-degenerate prior distri-
butions in a Bayesian formulation; (2) the heuristic
search is replaced by a Markov Chain progression
where the control variables - still calculated via affine
transformations - have their (posterior) probability
distributions updated; (3) the heuristic search (for
the optimal locations) is supplanted by the Markovian
progression.

Then, for an initial set of raster maps, this ap-
proach yields a probability distribution for each spa-
tial location, i.e. which locations are more probably
optimal to reforest.

INTRODUCTION

We reframe the optimization problem in
Vanegas [2009] in three important ways:

1) Put the raster map data (matrices) as ran-
dom variables with non-degenerate prob-
ability distributions.

2) Substitute the objective function in the
LP with posterior distributions for the
(random) locations to minimize sediment
flow.

3) Replace the heuristic search with a prob-
abilistic version via Markovian condi-
tional probabilities on the affine trans-
formations of the data for the control
variables

We can consider this - as in the original
paper - as a version of a Graphical Model
if even just for illustrative purposes. What
this reframe does is replace a Directed Graph
(DG) in the original frame with a Probabilistic
Graphical Model (PGM) in the new version
[Koller, Friedman 2009].

The approach is Markovian in the sense that
we (necessarily) place conditional dependency
restrictions on the - now - random data and
dependent variables.

This allows us to exploit the Chapman-
Kolmorogov (CK) equations (discussed below),
the Copula equivalence with the CK equations
(below as well), and places restrictions upon
the Probabilistic Graphical model which are
necessary for estimation.1

By reframing this optimization problem as a
Multivariate Markov Process we are, directly:

• Replacing the objective function Equation

1The simplest graphical models are non-Acyclic, i.e. trees.
We are close to that specification here.



(6) in Vanegas [2009] - minimizing Effec-
tive Accumulation (EA) at the ‘root’ or
outlet node of the graph - with a posterior

probability distribution for EA.
• Replacing the deterministic relationships

between the raster (matrix) data and the
control variables with, necessarily, proba-
bilistic ones.

So what this scheme will generate is not a
fixed set of nodes for deforestation for a par-
ticular set of initial conditions/raster data but
maps with continuous probability of posterior

likelihood of being reforested.

I. RANDOM DATA

The LP setup in Vanegas [2009] specifies
10 matrices as input data to the LP scheme.
Our first step is to outline and comment on
each of these. We relabel them here as X˜ k

where k is a alphanumeric index. For each
we assign a (possible) prior distribution. In
the specification below we consider the cells
in the Vanegas setup probabilistically indepen-
dent: this means the elements of each matrix
X˜ k are independent. This will be re-addressed
in the complete probabilistic scheme - as there
of course is a functional relationship between
each matrix entry/graph node.

Lastly, as the raster maps - as data - may be
easily standardized, we choose distributions for
these random variables with minimal support.
Here ‘is distributed as’ is written ∼:

• Flow Direction: We let each element in

X˜ FD ∼ DiscUnif(0, 8) (1)

that is a discrete uniform random variable
with equal mass on each of the possible
flow directions.

• Flow Production: Each

X˜ FP,0, X˜ FP,1 ∼ N(0, 1) (2)

without loss of generality.
• Flow Factor: Each

X˜ FF,0, X˜ FF,1 ∼ Unif(0, 1) (3)

without loss of generality.
• Breakpoint 1/Retention Capacity: Each

X˜ BP1,0, X˜ BP1,1 ∼ Unif(0, 1) (4)

without loss of generality.
• Breakpoint 2: Each

X˜ BP2,0, X˜ BP2,1 ∼ Unif(0, 1) (5)

without loss of generality
• Streams: Each

X˜ ST ∼ Ber(0, 1) (6)

These matrices are the independent vari-
ables, if you will, of the LP in Vanegas, in that
they do not functionally or probabilistically de-
pend on other data or random variables. Further
- the initial values are the only real observed
values: the remainder of the control variables
in the Vanegas LP are calculated directly from
these.

The parameterizations of the prior distribu-
tions here are non-informative: let γ ∈ Γ be the
collection of parameters and let π(γ) = 1, i.e.
uniform over the support, for all γ ∈ Γ.

Lastly here I comment that this approach
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is fully Bayesian: what this setup generates,
for a instantiation of data (set of raster maps),
are posterior distributions for the control vari-
ables. Contrast this with the original method in
Vanegas [2009]: there a particular set of raster
maps - data - yields deterministically a set of
locations for reforestation. This probabilistic

approach generates a probability distribution
for reforestation at each node/location, as well
as for EA and the other variables of interest.

II. DEPENDENT VARIABLES

The flow delivery among nodes in Vanegas
is governed by a piecewise linear function g;
we will regard this as

Y = g(X) (7)

Here the bold g indicates that on the entire
graph the transformation function is vector
valued.

From first principles the probability distribu-
tion of Y will be

Y ∼ f(g−1(X))|J| (8)

where |J| is the determinant of:

J = ((∂g−1(Y)/∂Y))ij (9)

the Jacobian (or the matrix of partial deriva-
tives of the transformation, component wise by
the matrix and vector valued elements of Y and
g).

Now we can exploit two things in Vanegas
2009. First that the function g is linear. This
means that

|J| = cTX (10)

the determinant of the Jacobian will be a
linear combination c of the instantiated values
of the random variables of X.

Second, as in Vanegas, let

Aij = 1{nodeij is reforested} (11)

where 1{} is the indicator function. So S

is the matrix collection of which nodes are
reforested. Now let

X˜ T
m,.

= [X˜m,0 X˜m,1] (12)

be the matrix-wise concatenation of the
raster maps for un-reforested and reforested
locations for variable m ∈ M, where M is
the list of variables.

Put

X∗m = X˜ T
m,.
⊗A (13)

so X∗ is the matrix wise concatenation of
all variables. Then the prior distribution for the
dependent variables will be

Y ∼ f(g−1(X∗))cTX (14)

III. MULTIVARIATE MARKOV PROCESSES

In the Markovian approach we can impose a
particular kind of dependence structure - condi-
tional dependence - on Y(St), now considering
a discrete time state space as in Vangas

The ordinary setup for a continuous space

Markov model is to progress a process through
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time; the Markovian property holds that this
progression occur with a stable transition prob-
ability law.

For ease of notation let s1 = St=1, etc. Then
the Chapman-Kolmogorov equations

fYs1 ,...,Ysn
=

∫ ∞
−∞

fYsn |Ysn−1
(Ysn|Ysn−1) · · ·

fYs2 |Ys1
(Ys2|Ys1)dYs2 · · · dYsn−1

(15)

hold that the progression of the random
process Ysi is governed by these transition
probabilities, ‘averaging’ probability mass over
the conditionally independent states.

A. Copula approach

Take Z1 ∼ FZ1 , Z2 ∼ FZ2 (two components
of Z, say) and set U = FZ1 and V = FZ2;
the pair (U, V ) are the ‘grades’ of (Z1, Z2)

i.e. the mapping of (Z1, Z2) in FZ1 , FZ2 space.
A copula is a function that takes the ‘grades’
as arguments and returns a joint distribution
function, with marginals FZ1 , FZ2 .

C(U, V ) = FZ1,Z2

Any multivariate distribution function can
yield a copula function,

FZ1,Z2(F
−1
Z1

(U), F−1Z2
(V )) = C

′
(U, V )

that it: the correspondence which assigns
the value of the joint distribution function to
each ordered pair of values (FZ1 , FZ2) for each
Z1, Z2 is a distribution function called a copula
(Nelsen 1996).

Joint distributions are specified by marginal

and dependence parameters; for example a bi-
variate exponential distribution

Hθ(x1, x2) = 1− e−λ1x1 − e−λ2x2

+e−(λ1x1+λ2x2+θx1x2)
(16)

has marginal parameters λ1, λ2 and depen-
dence parameter θ. The copula version for this
joint distribution is

Cθ(u, v) = H(−ln(1− u),−ln(1− v)) =

= (u+v−1)+(1−u)(1−v)∗e−θ ln(1−u) ln(1−v)

and the marginal parameters, still extant, are
sublimated in the probability integral transfor-
mation of U = FZ1;λ1 , V = FZ2;λ2

B. Markov Processes via Copula: Darsow,
Nguyen and Olsen

Following Darsow, Nguyen, Olsen (1991),
define

(A ∗B)(Z1, Z2) =

∫ 1

0

∂A(Z1, t)

∂Z2

· ∂B(t, Z2)

∂Z1

dt

for A,B copulas and Z1, Z2 in I . Since, for
Z1, Z2 ∼ FZ1 , FZ2 , C

P(Z1 < z1|Z2 = z2) =
∂C(FZ1 , FZ2)

∂Z2

and

P(Z2 < z2|Z1 = z1) =
∂C(FZ1 , FZ2)

∂Z1
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then, for any three random variables
Z1, Z2, Z3, where (Z1 ⊥ Z3)|Z2

CZ1Z3 = CZ1Z2 ∗ CZ2Z3

Calling Ctitj the copula of the random vari-
ables Zti , Ztj , then, for ti < tj < tk

Ctitk = Ctitj ∗ Ctjtk (17)

is an equivalent representation of the CK
equations, and

P(Zt ∈ A|Zs = z) =
∂Cst(Fs(z), Ft(a))

∂Zs
(18)

is the copula version of the CK transition
probability.

C. ‘Tunable’ Markovian models via Paramet-
ric Copula

A markov process is ‘conventionally’ spec-
ified by a set of initial distributions F0 and a
family of transition probabilities fZi|Zj

(Zi|Zj);
as an estimation problem, the goal is to esti-
mate these transition probabilities from data.

In this copula based approach we assign the
marginal distributions for each state FZ1 ,...,
FZm , and specify family of copulas satisfying
(17). The estimation problem here is to fit the
copulae, i.e. the transition dependence between
states, from data. This is just to write (17) as

Ctitk;θ1,θ2 = Ctitj ;θ2 ∗ Ctjtk;θ1 . (19)

This yields a likelihood type method

(θ̂1, θ̂2) = arg max
θ1,θ2

Ctitk;θ1,θ2 = Ctitj ;θ2∗Ctjtk;θ1 .
(20)

for fitting copula as transition probabilities,
and an interpretation of the estimated parame-
ters as the transitional dependence for the fitted
Markov process. The copula dimensions match
that of the transition probabilities: the simplest
and special case is for 2-copula for pairwise
conditional transitions.

This method is especially useful in Markov
process estimation problems where: marginal
distributions are available for each state; where
the initial distribution of the process is non-
informative; and where parametric models for
transition dependence are desirable.
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Algorithm

1) Initialize data and
prior distributions

2) Compute dependent
variables and prior
distributions

3) Metropolis Hastings
to compute posterior
distributions

4) Step Markov Process
- generate ‘new’
data from posterior

5) Compute dependent
variables and prior
distributions

6) Repeat until
convergence
in posterior
distributions and
reforested locations

Fig. 1 Algorithm

Recall that each of these matrices are instan-
tiated values of random variables in this setup.
We consider each entry as independent, thus the
distributions for each random matrix - at this
moment - are concatenations of independent
identically distributed random variables.

IV. BAYESIAN SETUP

The key to this approach is replacing the op-
timization scheme - i.e. the constrained objec-
tive function for Effective Accumulation - with
the functional relationship between the inde-
pendent and dependent data and then drawing
from the probabilistic posterior of the control
variables of interest: Effective Accumulation,

the constraints on flow, and which nodes are to
be reforested.

Each of these are now probabilistic with a
posterior distribution; the choice of nodes to
be reforested is a posterior probability for each
node between zero and one.

The outline of the algorithm is listed in Fig-
ure 1. In fact the algorithm exploits Markovian
theory twice: in step 3 we use the Metropolis-
Hastings procedure to calculate the posterior
distributions of the (transformed) data; in step
4 we recast the heuristic search in Vanegas
[2009] as a Markov Chain, draw ‘new’ data
iterates and return to step 2. Step 3 could
be avoided in cases where conjugate posterior
distributions have closed or analytic form.

We illustrate the algorithm using a low di-
mensional example, the same used in Vanegas
[2009]. While we have some concern about the
computational expensiveness of this procedure
as we are able to parameterize the overarching
Markov Chain: the analog for the heuristic
search.

A. Data initialization

We use the ‘toy’ data in Fig. 1(a) from
Vanegas [2009]. These are five 4× 4 matrices.
The data are:
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X˜ FD =


5 5 5 0
4 4 4 3
4 5 3 3
4 3 3 2

 (21)

X˜ FP,0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (22)

X˜ FF,0 =


1 .5 .5 1
1 .4 .7 .2
1 .2 .7 .2
1 1 1 1

 (23)

X˜ BP1,0 =


.5 .5 .5 .5
.5 .5 .5 .5
.5 .5 .5 .5
.5 .5 .5 .5

 (24)

and

X˜ BP2,0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (25)

Fig. 2 Matrix representation of data

So each of these are draws, singly valued
replicates from independent identically dis-
tributed prior distributions for each variable.

B. Compute Dependent Variables, Prior Dis-
tributions

4

7

11

1510 16

13 14

3

12

8

2 6

91
5

Fig. 3 Graphical representation of data in Figure 1

C. Metropolis-Hastings

We use a modified version of the Metropolis-
Hastings algorithm (Chib & Greenberg [1995];
Metropolis & Hastings [1953]) to draw repli-
cates from the posterior distributions necessary
for the third step in the Algorithm.

Here we exploit the fact that all of the trans-
formations from ‘data’ (equations (1)-(5)) to
the ‘dependent variables’ necessary for the cal-
culation of Effective Accumulation are linear.
The prior distributions in equations (1)-(5) are
invariant to linear transforms - only the support
must be adjusted; the distribution for equation
(6) changes from Bernoulli to Binomial under
linear transform.

In our set up then we use the prior distribu-
tions of the dependent variables (equation (14))
as the conditionally independent distributions
we cycle through to generate posterior repli-
cates from the joint multivariate distribution.
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Sub-Algorithm (2)-(3)

1) Use Equation (14)
to calculate prior
distributions for
y = (y1, ..., yK)

2) Let y1[0] = y1, set s = 0
3) WHILE s < S DO
4) FOR k in 1 : K
5) Choose

yk+1[s+ 1]|yk[1], ..., y1[s]
according to the
density in Equation
(14)

6) NEXT k
7) END WHILE

Fig. 4 SubAlgorithm

We set S sufficiently large to establish the
ergodic properties of the resampled empirical
distribution; for low dimensional data and these
simple distributions S on the order of 102

should be sufficient, discarding the first several.

D. Markov Chain Progression

Here we are replacing the heuristic search
in Vanegas [2009] with a multivariate, discrete-
time, real-valued Markov Chain.

In the original setup, the optimization is to
minimize EA at the root node - of course de-
pendent upon updated EA calculation at parent
nodes. Once a node is reforested, EA is recal-
culated and downstream (or parent) nodes are
considered for reforestation by recalculation of
EA.

In our setup, we exploit a parametric repre-
sentation of the transition probability between

states in a Markov Chain (equation (18)). Look-
ing again at this equation and modifying the
notation:

P(Zt+1 ∈ A|Zt = z) =
∂Cθ

t,t+1(Ft(z), Ft+1(A))

∂Zt
(26)

Let A ∈ A be a particular state of reforesta-
tion for the nodes; if there are K nodes (i.e.
the dimension of each of the data matrices is
(
√
K ×

√
K)) then there are 2K such states.

Essentially the Vanegas heuristic search maps
a subset of these possible states to an ordered
list. In this notation Zt is the complete set
of information at discrete time t: the data
matrices, the dependent variables, the set of
nodes that are reforested at t, the

Our version is to impose a ‘preferential’ dis-
tribution on this multivariate transition proba-
bility; let θ ∈ Θ be the particular choice for the
parameterization for the copula C governing
the transitional dependency. Our job is only to
select a particular choice for θ that ‘matches’
the optimization problem, in this case to mini-
mize the EA at the root node.

Such a θ can be selected via Equation (20),
using output from the Vanegas algorithm -
or any set of reforested nodes with initial
conditions - as data. Equation (20) generates
maximum likelihood estimates (MLE) - θ̂ -
for θ. Then the particular Multivariate Markov
Chain (out of a family of Markov Chains on Θ,
characterized by their transition probabilities of
which a particular has been chosen by MLE θ̂)
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Sub-Algorithm (4)-(5)

1) Choose K dimensional
copula C;Use
Equation (20) to
choose θ̂

2) Set t = 0
3) WHILE t < T DO
4) Use Equation (26) to

generate Zt+1 from Zt
5) GOTO SubAlgorithm

(2)-(3), RETURN from
6) END WHILE

Fig. 5 SubSubAlgorithm

In this way the Markov Chain will be up-
dated by the deterministic (affine) transfor-
mations and the probabilistic draws from the
Gibbs sampling in the Sub-Algorithm.

E. Semi-Fully Bayesian

In notation we consider Zt is the complete
state of the problem at each discrete time unit.
Via Equation (14) and Equation (20) we have
the conditional (posterior) distribution for Zt as

fZ ∝
∂Cθ

t,t+1(Ft(z), Ft+1(A))

∂Zt
· fX(g−1(X))|J|

(27)

where we have two crucial omissions.
The first, the normalizing constant g(Z), the
marginal distribution for all the data, we access
via the Gibbs sub algorithm. The second, a
prior distribution for the parameter θ, say π(θ),
we consider non-informative in this problem.
In future versions - i.e. where more data are

available from an optimization - or better yet a
real world re-forestation scheme - imposing an
informative prior on the transitional probability
function of the Markov Chain will be useful.

V. RESULTS

This approach, on low dimensional data, will
not ‘beat’ the method in Vanegas [2009] in
computational time; while we are replacing a
a heuristic search with convergence on O(n2)

(the heuristic search in Vanegas is essentially a
sorting algorithm) with a probability estimation
problem on O(n2), the additional draw from
the posterior distribution introduces an addi-
tional O(nK) of computation.

Our goal here is more to demonstrate that the
search can be placed in the parameter space of
a properly determined probability model. We
consider our measure successful if the results
are similar to those of the heuristic search -
which, are, as well, only estimates (but strictly
deterministic ones) of a unique solution to an
LP problem.

Using the ‘toy’ data from Vanegas, we ini-
tialize the matrices as random variables, use the
affine probability transformations to propagate
the network flow (effective accumulation) and
the Markovian models via the Copulas to com-
pute probabilities for Effective Accumulation
in each node.
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Fig. 6 Graphical representation of data, one draw, first
iteration

In the ‘draw’ illustrated in these figures -
we use treat the first draw from the priors as
degenerate: we just use the data as given in
Vanegas [2009].
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Fig. 7 Graphical representation of data, one draw,
second iteration

The nodes are colored in the figures as
follows: no color - the mean of the poste-
rior distribution for Effective Accumulation is
lower than the mean for all nodes; orange -
the mean of the posterior distribution for EA is
between the mean and one standard deviation
above it; red - the mean of the posterior for EA
is above the mean plus one standard deviation.
Remember that each ’iteration’ is just a change
in state (i.e. another draw from the posterior

and updating of the affine equations) in the
Multivariate Markovian process: each node has
a posterior distribution for EA.
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Fig. 8 Graphical representation of data, one draw, third
iteration

In practice these probabilities and rules can
be defined with more granularity - for a model
over many locations differences in these poste-
rior probabilities may be slight.
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Fig. 9 Graphical representation of data, one draw,
fourth iteration
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Fig. 10 Graphical representation of data, one draw, fifth
iteration

As well, for a high dimensional problem the
computation time between iterates may be long.
Not only do the affine equations need to be
update, but the posterior distributions of the
variates which depend on those equations.

Lastly - we chose an Archimedean copula
as the ‘engine’ for this Multivariate Markov
- other choices are popular. The Archimedean
families have properties - including commuta-
tivity in arguments (abelian-ness) which may
be undesirable in other modeling
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Fig. 11 Graphical representation of data, one draw,
sixth iteration

In this example we stopped running the
algorithm after twenty-five iterations. Again -
a larger dimension problem may require many

more iterations, thus many more draws from
the posterior distribution. The distribution of
the multivariate process was ’stable’ (no nodes
changed color given our ‘rules’) after seven-
teen iterates though the probability values did
fluctuate a bit.
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Fig. 12 Graphical representation of data, one draw,
twenty-fifth iteration

In summary: we have demonstrated how to
replace a heuristic method to solve an LP prob-
lem with a probabilistic one. Mathematically,
however, we have not demonstrated equiva-
lence between the two, nor have we proven
that our method will generate a solution for any
heuristic method. We have illustrated that - on a
linear control problem - Markovian probabilis-
tic progression between states can substitute
for deterministic equations. We address the
mathematical support for this equivalence in
future work.
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